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ABSTRACT

At any instance in the factoring algorithm, the accumulative result stands indepen-

dently. In e�ect, there is no clear direction to manoeuvre whether to go left or right.

General Lucas sequences are practically useful in cryptography. In the past quarter

century, factoring large RSA modulo into its primes is one of the most important and

most challenging problems in computational number theory. A factoring technique

on RSA modulo is mainly hindered by the strong prime properties. The success of

factoring few large RSA modulo within the last few decades has been due to comput-

ing prowess overcoming one strong prime of RSA modulo. In this paper, some useful

properties of Lucas sequences shall be explored in factoring RSA modulo. This paper

will also introduces the S-index formation in solving quadratic equation modulo N .

The S-index pattern is very useful in designing an algorithm to factor RSA modulo.

The S-index will add another comparative tool to better manoeuvre in a factoring

process. On one hand, it shall remain a theoretical challenge to overcome the strong

prime properties. On the other hand, it shall remain a computational challenge to

achieve a running time within polynomial time to factor RSA modulo. This paper

will propose an avenue to do both using general Lucas sequences.
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1. Introduction

The complexity of real-world problems with an absence of su�cient theories
and the lack of knowledge require sophisticated methods of accurate intelligent
systems capable of re�ecting practical decision on unforeseen cases (Czekalski,
2006).

In this paper, we have identi�ed a practical S-shaped instance which can be
used as a comparative index to the di�cult factoring problem. While travelling
along the quadratic domain, this proposed S-index function will be useful in
determining of the location whether it is to the left or right of the center by
comparing its concavity within the vicinity of its neighbourhood.

2. An Overview on S-index Function

An S-shaped function has been identi�ed throughout modern computa-
tional sciences. Let us start from a continuous random variable X with a
simple probability density function (pdf) fX(x). Its cumulative probability
function (cdf),

FX(x) =

∫ x

−∞
fX(t)dt, −∞ < x <∞

forms an S-shape function also known as an ogif. A classical standard normal
distribution pdf is in Figure 1.

Figure 1: A standard normal distribution function from three standard deviation to the left and
right of mean zero.

The cdf ofX has been plotted in Figure 2. Clearly, it follows a nice S-shaped
function.
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Figure 2: A nice ogif from standard normal distribution function forms an S-shaped function.

An ideal transcendental sigmoid function is another good example. Let a
basic sigmoid function be f(x) = 1

1+e−x on −∞ < x < ∞ as shown in Figure
3. This sigmoid function is an odd function centered at the origin.

Figure 3: A sigmoid function forms an ideal S-shaped function.

An S-shape comparative index function has positive derivative throughout
its domain. While its second derivative is always positive to the left of the cen-
ter, changing a concavity direction at the center, its second derivative remains
negative to the right of the center. In other words, there is a clear change of
concavity at the center. It concaves up on the left but concaves down on the
right of the center.

An S comparative index function is also used in Fuzzy Logics. The shape
of membership function is important for a particular problem since they e�ect
on a fuzzy inference system. An example of S-shaped membership function
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Figure 4: An S-shaped membership function forms a practical comparative decision making index
in Fuzzy Logics.

(SMF) is a spline-based curve mapping on the input vector x to a membership
value (or degree of membership) between 0 and 1. A typical example of SMF
is as follows

f(x) =



0, x ≤ a

2
(
x−a
b−a

)2
, a < x ≤ a+b

2

1− 2
(
x−a
b−a

)2
, a+b

2 < x < b

1, b ≤ x

Figure 4 shows an example of an SMF with extreme parameters a = −2 and
b = 2. Let us take a look at another mathematical instance. A sinc function
is popular in signal processing �elds. Let a sinc function be f(x) = sin x

x on
−3 < x < 3 as shown in Figure 5.
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Figure 5: A sinc function is a useful function in representing a natural signal.

Figure 6: A clear concavity behaviour can be observed in the derivative of a sinc function.

Let us take a look at the negative of its derivative. Unlike in previous
examples, we want to observe a more extreme case. The negative derivative
of this sinc function has been plotted in Figure 6. In this particular case, the
S-shaped function goes beyond the extreme parameters a = −2 and b = 2 and
continues on its concavity paths.

3. Lucas Sequences

General Lucas sequences have made signi�cant contribution to the �eld of
cryptography. Lucas sequence V has been proposed to be used for public key
cryptosystem (Smith and Lennon, 1993), in a manner similar to the famous
RSA (Rivest et al., 1978), but using Lucas sequences modulo a composite
number instead of exponentiation. It has stipulated to have the same security
level as RSA for the same size key, but is about twice as slow. A special Lucas
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sequence has been used to directly factor pseudo prime numbers especially
Carmichael numbers (Abu et al., 2004).

An e�cient computation of general Lucas sequences can be found in (Joye
and Quisquater, 1996). Zhenxiang Zhang has shown on how to factor an RSA
modulo into its primes near both multiples of group orders P − 1 or P + 1
and respectively Q − 1 or Q + 1 using Lucas sequences (Zhang, 2001). An
asymmetric key GM cryptosystem has been developed by Sha� Goldwasser and
Silvio Micali in 1982 (Goldwasser and Micali, 1984). It is semantically secure
based on intractability of the quadratic residue problem moduloN = PQ where
P and Q are large primes. The di�culties of decrypting the ciphertext without
the key pair (P,Q) is solely based on a comparative interactive challenge on
whether a given ciphertext c is a quadratic residue modulo N when the Jacobi
symbol for c is +1.

The non-positional nature of Residue Number Systems (RNS) is very e�-
cient in a single arithmetic computing without any hassle of carry propagations.
Unlike in the common index number system, RNS has a drawback in compari-
son. There is no ease general method for magnitude comparison in RNS. This
inability to compare two numbers whichever is larger makes it di�cult to op-
erate on large modulo e�ciently especially in the �eld of cryptography (Sousa,
2007). The magnitude comparison in RNS is equivalent to the Comparative
S-Index in this paper.

4. Criteria of Strong RSA Primes

Let N be the product of two primes, P and Q. It may be desirable to use
strong primes for P and Q. These are prime numbers with certain properties
that make the product N di�cult to factor by known factoring methods. The
selection of P and Q as strong primes has been recommended, prior to the
year 2000, as a way to safeguard the well-known classical factoring algorithm
(Rivest and Silverman, 1997). However, these basic strong prime criteria are
independently imposed on P or Q.

Among the properties of strong RSA modulo N = PQ are as follows.

Criterion 1: P − 1 and P + 1 consists of a large prime factor.

Let P − 1 = P−0 · P
−
1 · . . . · P

−
k− and P + 1 = P+

0 · P
+
1 · . . . · P

+
k+ . The largest

prime factors P−k− and P+
k+ should be larger than 256-bit for 512-bit P .
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Criterion 2: Q− 1 and Q+ 1 consist of a large prime factor.

Let Q−1 = Q−0 ·Q
−
1 · . . . ·Q

−
k− and Q+1 = Q+

0 ·Q
+
1 · . . . ·Q

+
k+ . Respectively, the

largest prime factors Q−k− and Q+
k+ should be larger than 256-bit for 512-bit

Q.

Criterion 3: Recursively, for each largest factor, P−k− − 1 and P+
k+ − 1 must

also consist of large enough prime factor, namely, P−−k−− and P+−
k+− following the

notation in Rivest and Silverman (1997).

Criterion 4: Each largest factor of the prime Q−k− − 1 and Q+
k+ − 1 must also

consist of large enough prime factor namely, Q−−k−−and Q
+−
k+− respectively.

Factoring the RSA modulo N is well known to be infeasible. Recently,
(Boudaoud, 2009) explores another practical approach to surmount this major
di�culty by �nding the factorization of an integer in a small neighbourhood of
N instead of N . Bakhtiari and Maarof (2012) pointed out that there are more
than one set of decryption key (d,N) on a given set of RSA encryption key
(e,N). However the distance between them is lcm(P − 1, Q− 1) which is ruled
by the basic strong prime criteria.

Let an elliptic curve be the set of points

E(a, b) =
{
(x, y, z) : y2z ≡ x3 + axz2 + bz3 (mod p)

}
By the end of the century, it has been noted to be useless to concentrate on
strong primes. It is unnecessary to protect against factoring attacks by building
large prime factors into P −1 or P +1 since the adversary can instead attempt
to overcome by �nding an elliptic curve E(a, b) whose size

P + 1− 2
√
P ≤ |E(a, b)| ≤ P + 1 + 2

√
p

is smooth (Rivest and Silverman, 1997).

5. General Lucas Sequences

Given integer parameters p > 2 and q > 0, the general Lucas sequences give
rise to two functions similar to exponentiation, namely, Un and Vn.
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U0 = 0, U1 = 1, Un = p · Un−1 − q · Un−2
V0 = 2, V1 = p, Vn = p · Vn−1 − q · Vn−2

Calculating an element of a Lucas sequence can be done in a very similar
pattern to exponentiation using a power modulo operation. It may be helpful
to think of p as the base and the index n as the exponent. The closed forms of
the general Lucas sequences are:

Un =
αn − βn

α− β
and Vn = αn + βn.

where α and β are the two roots of the quadratic polynomial x2 − px+ q.

These classical Lucas sequences Un and Vn are generated from second order
recursions with integer variables (p, q) and discriminant δ = p2 − 4q. In the
case of (p, q) = (1, 1), the Lucas sequence Un is popularly known as Fibonacci
numbers, and their companions Vn are the Lucas numbers. The requirement
on P and Q, to be strong primes by making P ± 1 and Q ± 1 to have large
prime factors, may no longer appear to be adequately substantiated in the view
of the best factorisation algorithms known today.

Pollard Rho Method basically can achieve rapid factorization if P − 1 con-
sists of only small prime factors. On the other hand, similar result can be said
also about P + 1. This method of integer factorisation is originally described
in Williams (1982). It can �nd a large factor P very quickly when P + 1 is
composed of only small factors. Zhang (2001) has also shown how the general
Lucas Sequence can be employed to exploit any weak primes from both sides,
the P − 1 and P + 1.

6. Criteria on General Lucas Sequences

Let N = PQ. For a given parameters p and q, take δ = p2 − 4q. Let

εP =
(
δ
P

)
and εQ =

(
δ
Q

)
. The subscript to the epsilon, ε is usually left out

within the context of known prime P or Q and εN =
(
δ
N

)
=
(
δ
P

)
·
(
δ
Q

)
= εP ·εQ.

For instance,
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εP =

(
δ

P

)
=

{
+1, δ is quadratic residue (mod P )

−1, δ is non-quadratic residue (mod P )

Here the criteria of general Lucas sequences are being compactly summarised.
They are very practical tools in factoring process.

Figure 7: Un (mod N) sequence is odd with respect to the center period C.

Figure 8: Vn (mod N) sequence is even with respect to the center period C.

Criterion 1: All the operations here are done modulo N . The maximum
period of the general Lucas sequences U and V modulo N of parameters p
and q is C = lcm(P − εP )(Q − εQ). This criteria has been regarded as a
generalisation of the Euler totient function for Lucas functions, the Lehmer
totient function (Lehmer, 1930).

Criterion 2: The Lucas sequence U is odd while V is even with respect to
the period as shown in the Figures 7 and 8 above, i.e. UkC−n = −UkC+n and
VkC−n = VkC+n for any integer k and positive integer n from the center period
C = 0.
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Let the parameters of general Lucas sequences be (p, q) = (6, 1). The values
of both Lucas sequences have been listed in Table 1. The graphs in Figures 7
and 8 above show typical characteristics of an odd sequence Un (mod N) and
an even sequence Vn (mod N) for N = PQ = 4073 · 8209 = 33435257. This
criterion has made Lucas sequence V appear to be a better reference than U
in the LUC public-key system.

Criterion 3: The center values of the general Lucas sequences U and V mod-
ulo RSA primes are as follows;

i. Uk(P−ε) ≡ 0 (mod P ) for any positive integer k.

ii. Vk(P−ε) ≡ 2q
k(1−ε)

2 (mod P ) for any positive integer k.

iii. Uk(Q−ε) ≡ 0 (mod Q) for any positive integer k.

iv. Vk(Q−ε) ≡ 2q
k(1−ε)

2 (mod P ) for any positive integer k.

Preferably the second parameter q is set to be one(1) so that the sequence V
will always have consistent output 2 modulo N at a multiple instance of period
C.

Criterion 4: These following characteristics have been observed based on the
previous research on general Lucas sequences. Most researchers insist on Cri-
terion 3 as a more practical form for factoring purposes. Nevertheless, these
criteria are more �exible in factoring angles to choose from.

i. Uj(P−ε)+L − Uk(P−ε)+L ≡ 0 (mod P )

ii. Vj(P−ε)±L − Vk(P−ε)±L ≡ 0 (mod P )

iii. Uj(Q−ε)+L − Uk(Q−ε)+L ≡ 0 (mod Q)

iv. Vj(Q−ε)±L − Vk(Q−ε)±L ≡ 0 (mod Q)

for some positive integers j and k. It is a necessary condition that j 6= k for
integer −R < L < R where R is typically referred to the absolute di�erence
between the primes P and Q. This last criterion is the most useful but by
far the most elusive characteristic of the general Lucas sequences in designing
a factoring algorithm. It is also noted that Criterion 4 is useful for factoring
algorithm if it does not happen simultaneously i.e. the sequence U or V is not
equal to the ones modulo N .

Criterion 5: Alternatively, all the criteria above may be summarised in terms
of primes P and Q as follows. There are integers 0 ≤ aj , bk < Q and 0 ≤
cj , dk < P such that

i. Uj(P−ε)+L = aj · P + UL (mod N)
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Table 1: The values of general Lucas sequences Un (mod N) and Vn (mod N) near the center C.

n Un Vn

-20 10216491 30209367

-19 29036528 20045158

-18 30261649 23191067

-17 18792338 18795473

-16 15621865 22711257

-15 8068338 17166298

-14 32788163 13416017

-13 21484355 29894547

-12 29247453 32210237

-11 20259335 29625847

-10 25438043 11803817

-9 32063152 7761798

-8 33199841 1331714

-7 33394866 228486

-6 33428327 39202

-5 33434068 6726

-4 33435053 1154

-3 33435222 198

-2 33435251 34

-1 33435256 6

0 0 2

1 1 6

2 6 34

3 35 198

4 204 1154

5 1189 6726

6 6930 39202

7 40391 228486

8 235416 1331714

9 1372105 7761798

10 7997214 11803817

11 13175922 29625847

12 4187804 32210237

13 11950902 29894547

14 647094 13416017

15 25366919 17166298

16 17813392 22711257

17 14642919 18795473

18 3173608 23191067

19 4398729 20045158

20 23218766 30209367
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ii. Vk(P−ε)±L = bk · P + VL (mod N)

iii. Uj(Q−ε)+L = cj ·Q+ UL (mod N)

iv. Vk(Q−ε)±L = dk ·Q+ VL (mod N)

for every integer L. Thus, an RSA prime can be extracted respectively by
taking the greatest common divisor as follows;

i. P = gcd(Uj(P−ε)+L − UL, N)

ii. P = gcd(Vk(P−ε)±L − VL, N)

iii. Q = gcd(Uj(Q−ε)+L − UL, N)

iv. Q = gcd(Vk(Q−ε)±L − VL, N)

7. New Proposal on RSA Factoring

On one hand, it shall remain a theoretical challenge to overcome the strong
prime properties. On the other hand, it shall remain a computational challenge
to keep the running time within polynomial time to factor RSA modulo.

According to the Proposition 3.3 in (Khadir, 2008) Let N be the product
of two prime factors P and Q where 2 < P < Q. If we can compute e�ciently

two odd integers r and s such that s < P and |sQ − rP | ≤ 2
K+5

4 where K is
the bit-size of the integer rsN , then we can compute the factors P and Q.

In this paper, a more relaxed requirement shall be made. Suppose εN =(
c
N

)
=
(
c
P

)
·
(
c
Q

)
= εP · εQ = (+1)(+1) = 1. Let R < P < Q such that

R = Q− P .

N − 1 = (P − 1)(Q− 1) + (P − 1) + (Q− 1)

= (P − 1)(Q− 1) + 2(P − 1) +R = (P − 1)(Q− 1) + 2(Q− 1)−R

For a given odd w,

N − 1 + w = (P − 1)(Q− 1) + 2(P − 1) + (R+ w)

= (P − 1)(Q− 1) + 2(Q− 1)− (R− w)

and

N − 1− w = (P − 1)(Q− 1) + 2(P − 1) + (R− w)
= (P − 1)(Q− 1) + 2(Q− 1)− (R+ w)

Preferably, w = 1 is a good starting point.
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Let Vn be the special Lucas sequence with parameters (p, q) = (p, 1) so
that p2 − 4 is a quadratic residue of N . Then we need to set a special even
Lucas sequence such that V0 = 2, V1 = p, V2 = p2 − 2 and V3 = p · V2 − V1 =
p · (p2 − 2)− p = p3 − 3p.

Let N0 = N−1. Suppose an odd indexed sequence only is readily available.
Nevertheless, it is su�cient to generate the values of V sequences along other
large odd indexes. Since N0 − w and N0 + w are odd, V sequence modulo N
can be computed using a special algorithm below. The running time of this
textbook Algorithm 1 is still O(n3) compared to the running time of general
Lucas sequences.

Algorithm 1 A textbook algorithm to compute an odd Lucas sequence V

Function Vodd (p,K,N)
1: Set K = bn−1bn−2 . . . b2b1b0 be odd such that bn−1 = 1 and b0 = 1.
2: Left = V1, Right = V3.
3: for i = n− 2 down to 1 do
4: if bi = 0 then
5: Right = Left · Right −p (mod N)
6: Left = Left2 − 2 (mod N)
7: end if

8: if bi = 1 then
9: Left = Left · Right −p (mod N)
10: Right = Right2 − 2 (mod N)
11: end if

12: end for

13: Return Left

Following the Lucas sequence V criterion 5, there are integers a, b, c and d
such that

V(N−1)−w = aP + VR−w = bQ+ VR+w (1)

V(N−1)+w = cP + VR+w = dQ+ VR−w (2)

Let us compute

S = V(N−1)−w + V(N−1)+w ≡ VR−w + VR+w (mod N)

T = V(N−1)−w · V(N−1)+w ≡ VR−w · VR+w (mod N)

Let us scan for a candidate of x of Vr and y of Vs. respectively the satisfy the
conditions

x+ y ≡ S (mod N) (3)

x · y ≡ T (mod N) (4)
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From (3), let y = S − x, equation (4) will become,

x · y = x · (S − x) ≡ T (mod N) (5)

Consequently, the problem has been reduced down to solving the quadratic
equation modulo N. We shall search for the root of the function

f(x) = x · (S − x)− T (mod N).

Let us take the (2m+ 1) terms at one time as the error function,

g(x) =

x+m∑
i=x−m

f(i)

A sample case for N = 4073 · 8209 = 33435257 is made here. Let the Lucas
sequence parameters (p, q) = (6, 1), m = 1 and w = 3. From (1) and (2),

V(N−1)−3 = 146 · P + VR−3 = −146 ·Q+ VR+3

V(N−1)+3 = 1561 · P + VR+3 = −1561 ·Q+ V R− 3

The strategy is to locate the values of VR−3 and VR+3. The error function has
been plotted within the surrounding region of V(N−1)+3 in the Figure 9. We
would like to collect the points near zeros.

Figure 9: The error function near the zero value.

Let us take the square of the error function so that we can see the error
function value near zeros as depicted in Figure 10. The yellow dot is the target
value for V(N−1)+w. The touchdown points have been observed here as shown
in Figure 11. The errors are probabilistically getting larger as the points are
moving away from the center critical point. They are much easier to locate as
the points of local minima as shown in Figure 10. The green dot is the target
value for V(N−1)+3.
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Figure 10: Taking the square on the error function.

Figure 11: The point of local minima on the error function.

It has also been observed that the distances between the local minima is
getting smaller as the points go further away from the center. The list of points
x has been plotted in the Figure 12 which form the S pattern.

According to basic calculus, a point x to the left of the critical in�ection
point z, is said to be concaved up and to the right of the critical in�ection point
z is concaved down respectively.

8. Discussion

In order to check on its concavity, we need to capture at least three points
along the way. Let the three points are (x0, y0), (x1, y1) and (x2, y2). An
estimate sign of the second derivative will be determined by its concavity via
the di�erence between its two consecutive derivatives as follows,

y
′′

02 = y
′

12 − y
′

01 =
y2 − y1
x2 − x1

− y1 − y0
x1 − x0
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Figure 12: The point of local minima on the error function forms the S shape.

If the neighbourhood region has positive second derivative or concaves up, the
point of interest must be located on the left of the center. In the case of the
neighbourhood region has negative second derivative or concaves down, the
point of interest must be located on the right of the center.

Checking on 3 consecutive `touch-down' at any given point x, will give us
a good estimate of the concavity of the surrounding region. A major hurdle
in reducing the sub-exponential running time in breaking RSA down to super
polynomial running time is the comparative mechanism. At any one time in
the factoring algorithm, there has been no mechanism to compare the current
position and where to go next. In e�ect, there is no direction to maneuver
whether to go left or right. The S index pattern is very useful in designing an
algorithm to factor RSA modulo.

For instance, in order to determine the quadratic residue on ciphertext c
of N , it su�ces to predict whether the Lucas sequence V follow the S-index
pattern case 0 or case 1. The S-index pattern follows the similar behaviour on
all root of the quadratic equation (5) at V(N−1)−3, V(N−1)+3, VR−3 and VR+3.
Rather than locating the periodic center of general Lucas sequences U and V
as shown in Figures 7 and 8, it is much easier and we stand better chances in
locating the S pattern on the quadratic equation (5) modulo N .
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9. Conclusion

Factoring large integers into primes is one of the most important and most
di�cult problems in computational number theory. A factoring technique on
RSA modulo has been previously hindered by the strong prime properties. Few
algorithms have overcome the strong prime criteria of RSA modulo. Neverthe-
less, they are still subjected to the size of the primes. In this paper, some
useful properties of general Lucas sequences have been explored in factoring
RSA modulo. A major hurdle in reducing the sub-exponential running time
in breaking RSA down to super polynomial running time is the comparative
mechanism. At any instance in the factoring algorithm, the accumulative re-
sult stands independently. In e�ect, there is no clear direction to maneuver
whether to go left or right. This paper has introduced the S-index formation
in solving quadratic equation modulo N . The S-index pattern is very useful
in designing an algorithm to factor RSA modulo. Nevertheless, it shall remain
a computational challenge to see whether the running time of factoring RSA
modulo can be reduced down to a super polynomial time.
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